calculus_of_variation

问题提出

针对变分问题:

{G[y(x)]=x0x1F(x,y,y)dxy(x0)=y0,y(x1)=y1\left\{\begin{aligned} & G\bigl[y(x)\bigr]=\int_{x_0}^{x_1}F(x, y, y')dx \\ & y(x_0) = y_0,\quad y(x_1) = y_1 \end{aligned}\right.

根据变分法基本原理

δG=x0x1(FydFydx)δy  dx=0(1)\delta G = \int_{x_0}^{x_1}\left(F_y - \dfrac{ {\rm d}F_{y'} }{ {\rm d}x }\right)\cdot\delta y\;\mathrm{d}x = 0 \tag{1}

拉格朗日引理

然后这里给出一个拉格朗日引理

拉格朗日引理(Лемма Лагранжа):若对于每个连续函数 η(t)\eta(t), 有t0t1Φ(t)η(t)dt=0\displaystyle\int_{t_0}^{t_1}\Phi(t)\eta(t)dt=0 ,这里 Φ(t)\Phi(t) 在区间 [t0,t1][t_0, t_1] 上连续,则在该区间上 Φ(t)0\Phi(t) \equiv 0

E-L方程

于是根据上面给出的拉格朗日引理,我们可以得到E-L方程

FydFydx=0(2)F_y - \dfrac{\mathrm{d} F_y'}{\mathrm{d}x} = 0 \tag{2}

对上述的E-L方程展开可以得到:

FydFydx=Fy(Fyxxx+Fyyyx+Fyyyx)=FyFyxyFyyyFyy=0\begin{aligned} F_y - \dfrac{\mathrm{d}F_y'}{\mathrm{d}x} & = F_y - \left( \dfrac{\partial F_{y'}}{\partial x}\cdot \dfrac{\partial {x}}{\partial x} + \dfrac{\partial F_{y'}}{\partial y}\cdot \dfrac{\partial {y}}{\partial x} + \dfrac{\partial F_{y'}}{\partial y'}\cdot \dfrac{\partial {y'}}{\partial x} \right) \\ & = F_y - F_{y'x} - y'F_{y'y} - y''F_{y'y'} \\ & = 0 \end{aligned}

可以得到E-L方程的另一种形式

FyFyxyFyyyFyy=0F_y - F_{y'x} - y'F_{y'y} - y''F_{y'y'} = 0


calculus_of_variation
https://zongpingding.github.io/2024/03/26/calculus_of_variation/
Author
Eureka
Posted on
March 26, 2024
Licensed under